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1 Introduction

Let D := {|z| < 1}, T = ∂D denote the unit disk and circle respectively. A(D) :={
f ∈C

(
D
)
∩Hol(D)

}
stands for the “disk-algebra” of functions analytic in D and

continuous in the closed disk. For 0 < p < ∞,

H p =

 f ∈ Hol(D) : ‖ f‖p
H p := sup

r<1


∫
T

∣∣∣ f (reiθ
)∣∣∣p dθ

2π

< ∞


denotes the Hardy space. As usual, H∞ =

{
f ∈ Hol(D) : ‖ f‖∞ := sup

z∈D
| f (z)|< ∞

}
,

Ap(D) :=

 f ∈ Hol(D) : ‖ f‖p
Ap :=

∫
D

| f |p dA
π

< ∞


denotes the Bergman space — cf. [1,2,5,6], (dθ , dA are, of course, Lebesgue mea-
sures on T,D, respectively).

Consider the following trivial question:
Let f ∈C(T), ‖ f‖∞ := sup{| f (z)| : z ∈ T}= 1, and suppose ∃{ fn} ∈H1, fn→ f

in L1
(
T; dθ

2π

)
, i.e., lim

n→∞

∫
T | f − fn| dθ

2π
= 0.

Can we modify the sequence { fn} and find {gn} ∈ H∞, ‖gn‖∞
≤ 1 such that still

gn→ f in L1? The answer is, of course, “yes”. Indeed, by the F. & M. Riesz theorem,
f ∈ A(D), so gr := f (rz)→ f (uniformly in as r → 1) and, clearly, by Lebesgue
Bounded Convergence Theorem, gr → f in L1 while ‖gr‖∞

≤ 1. (Even simpler, just
take gn = f , n = 1,2, . . . .) The following highly nontrivial and useful extension to
the context of uniform algebras is the celebrated Hoffman–Wermer theorem. (For all
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basic facts and terminology concerning the theory of uniform algebras we refer to
[4].)

Let Γ be a compact metric space, C(Γ ) denotes the Banach algebra of all con-
tinuous functions on Γ . Let A be a uniform algebra on Γ , A ⊂ C(Γ ). As usual, MA
denotes the maximal ideal space of the algebra A. For any complex homeomorphism
ϕ of A(ϕ ∈MA), Mϕ denotes the set of all representing measures µ of ϕ .

The following result is due to Hoffman and Wermer [4, Ch. 11, Thm. 7.2].

Theorem 1 Let A and ϕ ∈MA be as above. Let f ∈C(Γ ) and assume that f belongs
to the closure of A in L1(µ) for all µ ∈Mϕ . Then, ∃{ fn} : fn ∈A, such that ‖ fn‖C(Γ )≤
‖ f‖C(Γ ) and fn→ f ,µ — a.e., for all µ ∈Mϕ .

The following question was initially posed to the author by J. Wermer in 1980.
(We shall refer to it as an ε-version of Thm. 1.)

Suppose f ∈C(Γ ) can be approximated within ε by H1(µ) :=
{

L1(µ)-closure of A,µ ∈Mϕ

}
,

i.e., distL1(µ)

(
f ,H1(µ)

)
≤ ε .

Question 1 Does there exist g∈A, ‖g‖∞ := ‖g‖C(Γ )≤‖ f‖C(Γ ), such that distL1(µ)( f ,g)≤
Cε , where the constant C only depends on ϕ?

Equivalently, if we denote by BA =
{

f ∈ A : ‖ f‖C(Γ ) ≤ 1
}

the unit ball of A and
f ∈C(Γ ), ‖ f‖∞ = 1 and distL1(µ)( f ,A)≤ ε , the question is whether the distL1(µ) ( f ,BA)=

O(ε), where the constant in O(ε) only depends on ϕ .
As stated, the answer, in general, is “No”.
More precisely, in ‘81, DK (unpublished) proved that for the Dirichlet algebras

(cf. [4]), i.e., for such A⊂C(Γ ) that Re A =CR(Γ ), the answer is “Yes” if we replace
O(ε) by the worse estimate O

(
4
√

ε
)
.

In [11], the answer “Yes” was extended to hypodirichlet algebas, also with the
estimate O

(
4
√

ε
)
. (Recall that A is called a hypodirichlet algebra if Re A has finite

codimension in CR(Γ ) — [4].)
Moreover, in the most basic case of a Dirichlet algebra, when A := A(D) (the disk

algebra), it was shown in [11] that even in the case of the disk-algebra in the unit disk
one cannot improve the estimate to O(ε), thus giving a negative answer to Wermer’s
question. Surprisingly, the latter result as indicated in [11] is essentially equivalent to
the unboundedness of the Hilbert transform in L1

(
T, dθ

2π

)
.

Finally, most recently, V. Totik [16] has ingeneously sharpened the argument in
[11, Thm. 3.4] to show that the asymptotics O

(
ε log 1

ε

)
, obtained in [11], is in fact

sharp in the A(D) context.
However, if one moves away from a “hypodirichlet” algebras context, e.g., re-

placing in the disk the algebra A (D) on the circle by putting it in the Bergman space
context, i.e., A(D)⊂C(D)⊂ L1

(
D, dA

π

)
, the problem has remained untreated. It was

mentioned in passing in [10] over two decades ago, but not much progress in under-
standing the problem in the setting of aggressively non-hypodirichlet case has been
achieved. (The set of representing measures for point evaluations in the disk is far
from finite-dimensional and is enormous.)

Let us briefly describe the contents of the paper.
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In Section 2 we tighten the arguments from [11] and slightly improve the O
(

4
√

ε
)

estimate to O
(
ε1/2 log 1

ε

)
for the hypodirichlet case. In view of the Totik result one

cannot do any better than O
(
ε log 1

ε

)
. Yet, it is still an open question whether one can

improve the estimates to O
(
ε log 1

ε

)
or even O

(√
ε
)
, in the hypodirichlet case. Since

the only known examples of hypodirichlet algebras today boil down to analogs of the
disk algebra on open finite Riemann surfaces with boundary, we restrict the discus-
sion to finitely connected planar domains to avoid drowning the reader in unneces-
sary technicalities. Using the techniques from [13] and [11], it is a routine exercise
to extend the results to finite Riemann surfaces and, further, to abstract hyperdirichlet
algebras.

In Section 3 we try to lay out some results on Wermer’s question in the Bergman
space context. We’ll finish with a discussion of some related open questions in Sec-
tion 4.

2 ε-L1-approximation in the hypodirichlet case

Let Ω be a finitely connected domain with the real-analytic boundary Γ :=
n⋃
1

γ j,

z0 ∈ Ω , g(z,z0) is the Green function with the pole z0. The harmonic measure is
defined by dw = dwz0 = 1

2π

∂g
∂nζ

(ζ ,z0)ds, ζ ∈ Γ , ∂

∂n is the inner normal to Γ at

ζ ∈ Γ , ds is the arc length on Γ .
The harmonic measures w j of the boundary curves γ1, . . . ,γn are defined as solu-

tions of the Dirichlet problem

w j |γk= δ jk, j,k = 1, . . . ,n.

(δ jk is the usual Kronecher symbol.) A := A(Ω) =
{

f ∈ Hol(Ω)∩C
(
Ω
)}

is the
“disk-algebra”.

The Schottky functions S j(ζ ) =
∂w j(ζ )

∂nζ

/
∂g(ζ ,z0)

∂nζ

, j = 1, . . . ,n are real-analytic on
Γ and annihilate Re A on Γ . In fact, if u is a harmonic function on Ω , continuous in
Ω and v is its harmonic conjugate the period of v around the contour γ j, j = 1, . . . ,n,
is given by

∆γ j v =−
∫
Γ

u(ζ )S j(ζ )dw

dim
{

S j
}n

1 = n−1. For details we refer the reader to [3,4,8,9,13]. The following is a
slight improvement of Thm. 1.2 in [11]. Let H p(Ω) denote the Hardy space, p > 0,
in Ω — cf. [3,4,8], the closure of A(Ω) in Lp(dw).

Theorem 2 Let f ∈C(Γ ). Assume that distL1(dw)
(

f ,H1
)
≤ ε , or, equivalently, ∃G∈

A, s.t. ∫
Γ

|G− f |dw < ε
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for some ε > 0. Then, there exists G∗ ∈ A, ‖G∗‖C(Γ ) ≤ ‖ f‖C(Γ ), such that∫
Γ

|G∗− f | dw≤C (z0,Ω)ε
1/2 log

1
ε

where the constant C depends only on Ω ,z0 but not on f .

Proof From now on ‖ · ‖ stands for ‖ · ‖C(Γ ), the supremum norm. Without loss of
generality ‖ f‖= 1. Let p : 0 < p < 1. Following the ideas in [11], define sets

E1 :=
{

ζ ∈ Γ ; |G(ζ )| ≥ 1+ ε
1−p}

E2 :=
{

ζ ∈ Γ ; |G(ζ )| ≤ 1+
ε1−p

2

}
E0 := Γ rE1 rE2.

Lemma 1
∫

E1∪E0
|G|dw < 3ε p

Proof

w(E1∪E0) = w
({

ζ ∈ Γ : |G(ζ )| ≥ 1+
ε1−p

2

})
≤

∫
E1∪E0

(|G|−1) · 2
ε1−p dw≤ 2

ε1−p

∫
E1∪E0

(|G|−1)dw

≤ 2
ε1−p

∫
E1∪E0

|G− f |dw≤ 2
ε1−p ε = 2ε

p

Hence, ∫
E1∪E0

|G|dw≤
∫

E1∪E0

(|G|− | f |+1)dw

≤
∫
Γ

|G− f |dw+w(E1∪E0)≤ ε +2ε
p ≤ 3ε

p.

Lemma 2 For δ > 0 sufficiently small define u0 ∈CR(Γ ) as follows:

u0 ≥ δ on Γ

u0 |E2 ≡ δ ,

u0 |E1 ≡ log |G|,

u0 |ΓrE2 ≤ log |G|+ δ

2
.

(This is, of course, possible by Urysohn’s lemma.) Then, there exists u1 ∈C(Γ ) such
that u1 ≥ 0, ‖u1‖ ≤C (z0,Ω)(ε p +δ ) and u0 +u1 ∈

(
Re A

)
C(Γ )

= the uniform clo-
sure of the real parts of A.
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Since the proof is essentially identical to that of Lemma 2.2 in [11], we only
indicate the main steps (also cf. to Lemma 2 in [9]).

Define the linear map Λ : CR(Γ )→ Rn−1,

Λ : u 7→

∫
Γ

S judw

n−1

j=1

(Here and on we assume γn is the outer boundary complement.) Let K+= {u ∈CR(Γ ) : u≥ 0}
be the positive cone in CR(Γ ).

Claim (Claim 1) Λ is a bounded linear operator and Λ (K+) = Rn−1.

We omit the proof of Claim 1 since it is identical to that in [9,11].

Claim (Claim 2) Set ‖x‖Rn−1 = max
1< j<n−1

∣∣x j
∣∣, x=(x1 . . . ,xn−1)∈Rn−1. Then, ‖Λ (u0)‖Rn−1 ≤

Cz0 (ε
p +δ ).

For each j = 1, . . . ,n−1∣∣∣∣∣∣
∫
Γ

u0Si dw

∣∣∣∣∣∣≤ max
1≤ j≤n−1

∥∥S j
∥∥∫

Γ

u0 dw =Cz0


∫
E2

u0 +
∫

E1∪E0

u0


and the claim follows from Lemma 1 and elementary inequalities log+ x≤ x, ε p ≥ ε ,
0 < p < 1, ε < 1.

To finish the proof of Lemma 2, find by Claim 1, u1 ∈ K+ : Λ (u1) =−Λ (u0).
Since Λ (K+)=Rn−1, ∃Cz0 : Λ

({
u ∈ K+ : ‖u‖ ≤Cz0

})
⊃
{

x ∈ Rn−1‖x‖Rn−1 ≤C′z0

}
.

Then,

Λ
({

u ∈ K+ : ‖u‖ ≤C′z0
(ε p +δ )

})
⊃
{

x ∈ Rn−1 : ‖x‖Rn−1 ≤Cz0 (ε
p +δ )

}
,

where Cz0 is the same as in Claim 2.
So, ∃u1 ≥ 0, Λ (u1) =−Λ (u0) and ‖u1‖ ≤C′z0

(ε p +δ ).

Consider the function u0+u1, Λ (u0 +u1)= 0, so it is orthogonal to the Span
{

S j
}n−1

j=1 .

Then, obviously, u0 + u1 ∈ Re H2(Ω)∩CR(Γ ), hence u0 + u1 ∈ Re A. Lemma 2 is
proved.

Now, continue the proof of Thm. 2. Fix δ < ε p

2 . Let u0,u1 be the same as in
Lemma 2 and take u ∈ Re A such that ‖u−u0−u1‖ ≤ δ

2 . Then, u ≥ δ

2 > 0 on Γ

since u0 +u1 ≥ u0 ≥ δ on Γ .
Set G0 = Ge−(u+iv), where u+ iv ∈ A, v(z0) = 0. Clearly, G0 ∈ A.

Claim (Claim 3) |G0| ≤ 1+ ε1−p on E2∪E0, and |G0| ≤ 1+ ε p on E1.
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Indeed,
|G0|E2∪E0

≤ |G|E2∪E0 ≤ 1+ ε
1−p.

On E1, we have (cf. the definition of E1):

|G0|= |G|e−u = |G|e−u0−u1e(u0+u1−u)

≤ |G|e− log |G|e‖u0+u1−u‖ ≤ 1+2δ ≤ 1+ ε
p

assuming that ε and, hence, δ are small enough.
Now,∫

Γ

|G0− f |dw≤
∫
Γ

|G0−G|dw+
∫
Γ

|G− f |dw≤
∫
Γ

|G0−G|+ ε. (1)

Also, ∫
Γ

|G0−G|dw≤
∫
Γ

|G0|
∣∣∣∣ G
G0
−1
∣∣∣∣dw

≤
(
1+ ε

1−p) ∫
E2∪E0

∣∣eu+iv−1
∣∣dw+(1+ ε

p)
∫
E1

∣∣eu+iv−1
∣∣dw.

(2)

Claim (Claim 4)
∫

Γ

∣∣eu+iv
∣∣dw≤ 1+Cz0ε p.

Proof (Proof of Claim 4) Using Lemmas 1 and 2 and the definition of u0, we obtain
for ε,δ sufficiently small:∫

Γ

∣∣eu+iv∣∣dw =
∫

E1∪E0

eudw+
∫
E2

eudw

≤
∫

E1∪E0

eu0+Cz0 (ε
p+δ )+ δ

2 dw+
∫
E2

eu0+Cz0 (ε
p+δ )+ δ

2 dw

≤
∫

E1∪E0

elog |G|+Cz0 (ε
p+δ )+δ dw+

∫
E2

e
3
2 δ+Cz0 (ε

p+δ )dw

≤C′z0

∫
E1∪E0

|G|dw+
∫
E2

(
1+C′′z0

ε
p)dw≤ 1+C′′′z0

ε
p,

where Cz0 ,C
′
z0
,C′′z0

, depend only on z0.
By Claim 4, ∫

Γ

∣∣eu+iv∣∣dw =
∫
Γ

eudw≤ 1+Cz0ε
p, (3)

so,
(

u > δ

2 > 0
)

,

∫
Γ

(eu−1)dw =
∫
Γ

∣∣eu+iv− eiv∣∣dw≤Cz0ε
p. (4)
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Let’s estimate ∫
Γ

∣∣eiv−1
∣∣dw =

∫
Γ

∣∣∣2sin
v
2

∣∣∣dw.

From (3), Jensen’s inequality and an elementary inequality log(1+ x)≤ x for x≥ 0,
we obtain ∫

Γ

udw≤Cz0ε
p. (5)

Now, by general Kolmogorov’s inequality,∫
{ζ :|v(ζ )|≥1}

∣∣∣2sin
v
2

∣∣∣dw≤ 2w{ζ : |v(ζ )| ≥ 1}

≤C‖u‖L1(dw) ≤Cε
p.

Further, for any q : 0 < q < 1 and |v| ≤ 1, we have 2
∣∣sin v

2

∣∣ ≤ |v| ≤ |v|q and using
general V. I. Smirnov’s theorem ([4, Ch. 3, Thm. 2.4]), since u > 0, we obtain from
(5): ∫

{ζ :|v(ζ )|≤1}

∣∣∣2sin
v
2

∣∣∣dw≤ 1
cos
(
q π

2

)‖u‖q
L1(dw)

≤
Cz0ε pq

1−q
.

Thus, since
∣∣eu+iv−1

∣∣≤ ∣∣eu+iv− eiv
∣∣+ ∣∣eiv−1

∣∣, we obtain∫
Γ

∣∣eu+iv−1
∣∣dw≤

∫
Γ

(eu−1)dw+
∫
Γ

∣∣eiv−1
∣∣dw

≤C′z0
ε

p +Cz0

ε pq

1−q
,

(6)

where q, p were arbitrary positive numbers < 1.
Now from (1), (2) and (6) we infer that there exists an absolute constant C =

C (z0,Ω) such that ∫
Γ

|G0− f |dw≤C
(

ε
p +

ε pq

1−q

)
, (7)

where 0 < p,q < 1 and ‖G0‖ ≤ max
(
1+ ε1−p,1+ ε p

)
≤ 1+ ε p for p : 0 < p ≤

1
2 . The minimum of (ε p)q

1−q over all 0 < q < 1 is eε p log 1
ε p . Thus ‖Go− f‖L1(dw) ≤

C
(
ε p + ε p log 1

ε p

)
, where C is a constant. The function ϕ(p) := ε p

(
1+ p log 1

ε

)
de-

creases for p : 0 < p ≤ 1
2 and attains its minimum ε1/2

(
1+ 1

2 log 1
ε

)
at p = 1/2.

Hence, ‖Go− f‖L1(dw) ≤ C
(
ε1/2 + ε1/2 log 1

ε

)
≤ C′ε1/2 log 1

ε
. Finally, replacing Go

by G∗ := Go/1+ ε1/2, ‖G∗‖ ≤ 1, we finish the proof of the theorem.
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Remark 1 As the reader has undoubtedly noted, we could have fixed p = 1/2 at the
very beginning and arrived at the same statement at the end.

The reason we painstakingly carried out the argument with an arbitrary p was
the hope that at the final stage the variation with respect to p will provide a sharper
estimate O

(
ε log 1

ε

)
. At this point we don’t see how to do it, nor were we able to

get rid of the logarithm and obtain at least O
(√

ε
)

estimate. We’ve left the general
scheme in tact in the hope that one reader might be more successful along these lines.

It is tempting to conjecture that the correct asymptotics might be O
(
ε log 1

ε

)
even

in the hypodirichlet case. However, there is a difference between this case and the
Dirichlet algebra case treated in Thm. 3.3 in [11]. The problem is that Lemma 2 is
immediate in the Dirichlet algebra case and the “buffer” set Eo in Lemma 1 is not
needed — cf. the proof of Thm. 3.3 in [11].

It would be a worthy project to try to follow the steps in the proof more or less
explicitly, when Ω is an annulus. We haven’t been able to obtain a better estimate.

3 Wermer’s Question in the Bergman Norm

Unfortunately we haven’t been able to settle Question 1.2 in a satisfactory fashion in
the context of the Bergman space A1⊂L1

(
D, dA

π

)
with respect to B1 = { f ∈ Hol(D) : ‖ f‖∞ ≤ 1}.

Here are some results we have been able to establish.

Proposition 1 Let f ∈C
(
D
)
. Assume without loss of generality that ‖ f‖= 1, i.e., the

uniform norm of f is 1. There exists a function ϕ : [0,1]→ R+, ϕ(0) = 0 continuous
at the origin, such that if distL1(D)

(
f ,A1

)
≤ ε , then distL1(D)

(
f ,B1

)
≤ ϕ(ε).

Proof Suppose to the contrary, ∃δ > 0 such that we can find {wn} ∈ L∞, ‖wn‖∞
= 1,

εn ↓ 0 such that distL1(D)
(
wn,A1

)
≤ εn but distL1(D)

(
wn,B1

)
≥ δ . Without loss of

generality, taking subsequences, we can assume that by the Banach–Alaoglu theorem
wn → w in the weak (∗) topology of L∞. First show that w ∈ B1. Indeed, ‖w‖∞ ≤
liminf‖wn‖∞

≤ 1. Thus, we only need to show that w coincides a.e. with an analytic
function. Take any ϕ ∈C∞

0 (D). Let fn ∈ A1 : distL1(D) (wn, fn) ≤ εn. We have, using
integration by parts,∫

D

w · ∂ϕ

∂ z̄
dA = lim

n→∞

∫
D

wn
∂ϕ

∂ z̄
dA = lim

n→∞

∫
D

(wn− fn)
∂ϕ

∂ z̄
dA.

So, ∣∣∣∣∣∣
∫
D

w
∂ϕ

∂ z̄
dA

∣∣∣∣∣∣≤ lim
n→∞

∥∥∥∥∂ϕ

∂ z̄

∥∥∥∥ · ‖wn− fn‖L1 = 0.

Thus, from Weyl’s lemma, cf., e.g., §1 in [15] and references therein, it follows that
w ∈ H∞, ‖w‖∞ ≤ 1, so w ∈ B1.

Yet, by our assumption ‖wn−w‖L1(D)≥ δ . Since ‖wn− fn‖L1(D)→ 0, ‖ fn−w‖L1(D)≥
δ

2 . Once again, going to subsequences, we can assume that fn → f ∈ A1 weakly in
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L1(D) (cf. Thm. 8.2 and Cor. 2 in [15]). We can do it since obviously, ‖ fn‖A1 ≤M <
+∞. At the same time,

0 = weak(∗)L∞ lim(wn−w) = weakL1 lim
n→∞

(wn− fn + fn−w) = f −w.

So, f = w. To summarize, fn → w weakly in L1, so, (cf. §8.3 in [15]) fn → w uni-
formly on compact subsets of D. Moreover, { fn}∞ are uniformly integrable because
for any measurable set E ⊂ D,∫

E

| fn|dA≤
∫
E

| fn−wn|da+
∫
E

|wn|dA≤ εn +Area(E).

Thus, by Vitali’s theorem, fn→ w in L1. This contradicts to ‖ fn−w‖L1 ≥ δ/2. This
ends the proof of the proposition.

Recall from [7] that if X is a metric space, Y ⊂ X is a subset, the metric projection
of x ∈ X on Y is the set

P(x) = {y ∈ Y : distX (x,y) = distX (x,Y )} .

Of most interest, [7], is the situation when Y is closed and #{P(x)}= 1.
In [7], it is shown that for X = L1(T), Y = H1(D) |T⊂ L1(T), such metric pro-

jection L1(T) 3 f 7→ g ∈ H1, g is the best approximation to f in H1, is well-defined,
i.e., the best approximation is unique (which was known before, from the results of
S. Ya. Khavinson, W. W. Rogosinski and H. S. Shapiro — cf. the references in [10])
and continuous.

The situation for the pair L1(D)⊃ A1 is more complex.
First of all for non-continuous functions in L1(D) the metric projection map are

not well-defined.
The following example is from [10, Ex. 3.2].
Let w = χD0 , the characteristic function of D0 =

{
z ∈ D : |z|< 1/

√
2
}

. Then,

f ∗ = c for any c : 0≤ c≤ 1 gives the best A1-approximation to w. The reason is that

if we take g∗ =

{
1, z ∈ D0

−1, z ∈ DrD0
then

∫
D

g∗zn dA = 0, n = 0,1,2, . . . .

So, g∗ annihilates A1, g∗ ∈ L∞ and for any c : 0≤ c≤ 1 we have

g∗(w− c) = |w− c| a.e. in D.

This, of course, is Hahn–Banach characterization of the best approximation — cf.
[10] for details. However, as is shown in [10], the best A1-approximation to w∈ L1(D)
is unique provided, e.g., that w∈C(DrE) and E is relatively closed in D and does not
separate D (cf. [10], also see the discussion of even stronger results there going back
to S. Ya. Khavinson). When the metric projection is well-defined for w ∈ L1(D,dA),
it is in fact continuous. The latter, following the generic reasons in [7], is a corollary
of the following fact. (Note that in L1−H1 context this was proved by D. J. Newman
in [14].)
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Proposition 2 Let w∈L1(dA), { fn}∈A1, and ‖w− fn‖L1(D)→ d := distL1
(
w,A1

)
=:

‖w− f ∗‖L1 , i.e., f ∗ is the best A1-approximation to w. Assume that f ∗ is the unique
best approximation to w in A1.

Then, ‖ fn− f ∗‖L1(D)→ 0 as n→ ∞.

Proof Suffices to show that any subsequence of { fn}∞

1 contains another subsequence
converging in L1 to f ∗. Obviously, ‖ fn‖L1(D) ≤M <+∞.

Taking any subsequence of { fn}∞

1 that we, hopefully without confusion, will still
denote { fn}.

Then, we can extract a subsequence
{

fnk

}∞

k=1 such that the measures fnk dA weak∗−−−→
F dA. By the F. and M. Riesz theorem for Bergman spaces [15, Thm. 8.2], F ∈ A1.
Clearly, invoking the Bergman reproducing kernel K(z,ξ ) = 1

π

1
(1−zξ )2 , fnk(z) →

F(z), z ∈ D, and the convergence is uniform on compact subsets of D. Thus, Fatou’s
lemma yields

d ≤ ‖w−F‖L1 ≤ liminf
k→∞

∥∥w− fnk

∥∥
L1 = d.

So, F = f ∗, since w has unique best A1-approximation. Hence, we have∥∥w− fnk

∥∥
L1(D)→‖w− f ∗‖L1(D) and w− fnk → w− f ∗

pointwise. By the well-known theorem of real analysis (G. M. Fikhtengoltz’ theorem

as it is called in the Russian literature), w− fnk

L1(D)−−−→ w− f ∗, so fnk

L1(D)−−−→ f ∗, as we
set to prove. ut

Remark 2 Unfortunately, there are no known sufficient criteria for everywhere dis-
continuous bounded functions for which the metric projection onto A1 would still be
well defined. In the opposite direction, there are no known examples of non-radial
functions w with massive sets of discontinuities for which the best A1-approximation
is unique.

The following rough result provides the negative answer to Wermer’s question if
one limits oneself to the O(ε) asymptotics. Recall that B1 := { f ∈ H∞ : ‖ f‖∞ ≤ 1}.

Theorem 3 For all δ > 0 sufficiently small there exist functions ηδ ∈C
(
D
)
, ‖ηδ‖∞

=

1, such that distL1(D)
(
ηδ ,A1

)
≤ δ , but 1

δ
distL1(D)

(
ηδ ,B1

)
→ ∞ when δ → 0.

Proof Let Ω := {x+ iy : x > 0,y < q(x)}, where q(x) is a smooth, convex, decreas-
ing function, q(0) = m� 1, lim

x→∞
q(x) = 0. We shall leave out for now more precise

specifications of q and the rate of decrease of q(x).
Let f := u+ iv be the Riemann map of D onto Ω , once again, leaving for later the

normalization f (0), let f (1) = (+∞,0).
Fix ε > 0. Let ϕε : [0,1) 7→ [0,2] be a continuous function satisfying the following

properties

(i) ϕε(r) = 0, 1− ε ≤ r < 1;

(ii)
1∫
0

sgn(ϕε(r)−1)r dr = 0, (sgn, as always, denotes the signum function);
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(iii)
1∫
0
|ϕε(r)−1|r dr ≤Cε , where C is sufficiently large and fixed.

(It’s a trivial exercise to check that C = 2 suffices.)
Finally, set wε(z)=ϕε(|z|)u(z)+iv(z). Note that wε(z)− f (z)= (ϕε(|z|)−1)u(z).

Thus, invoking property (ii), the fact that ϕε(|z|)−1 is a radial function, while by the
mean value property

2π∫
0

u
(

reiθ
)

dθ = 2π u(0)

and u > 0, we conclude via integration in polar coordinates that∫
D

sgn(ϕ(|z|)−1)u(z)zn dA = 0, n = 0,1,2, . . . .

Hence, as before (cf. [10]), the Hahn–Banach characterization of the best approxima-
tion in L1 yields that f (z) is in fact the best A1-approximation to wε(z) in L1.

Moreover, from (iii), using again the mean value property one easily derives that

distL1(D,dA)
(
wε ,A1)= ‖wε − f‖L1(D) = u(0)O(ε).

Now, since v(z) is continuous in D and u(z) is its harmonic conjugate, u(z)∼ o(1) log |1−
z|, where o(1) depends only on m and the rate of decent of q(x), the function defin-
ing the boundary of Ω . Therefore ‖wε‖L∞ = o

(
log 1

ε

)
(cf. property (i)). Now, if we

rescale and set ηε := wε

‖wε‖∞
, fε =

f
‖wε‖∞

, we have for a fixed ε > 0:

ηε ∈C
(
D
)
, ‖ηε‖∞

= 1, distL1(D)
(
ηε ,A1)∼ u(0)ε

‖ηε‖L∞

.

Observe that ∃c1,c2 independent positive constants, such that (wε is supported on
{|z| ≤ 1− ε}

c1 ‖wε‖∞
≤ max
|z|≤1−ε

u≤ c2 ‖wε‖∞
.

and as pointed out earlier, max
{|z|≤1−ε}

u∼ o
(
log 1

ε

)
= α(ε) · log 1

ε
, α(ε)→ 0 with ε and

1
α(ε) log 1

ε

→ 0.

Let us narrow down the choice of Ω . By Chebyshev’s inequality,

Area{z ∈ D : u(z)≥ λ > 0}
π

≤
∫

{u(z)≥λ}

u(z)
λ

dA
π
≤ u(0)

λ

Now, we choose the “upper boundary” {y = q(x)} of Ω so that for some constant
c = c(q):

1
π

Area{z ∈ D : u(z)≥ λ > 0} ≥ c
λ

β (λ ),

where β (λ )→ 0, when λ → ∞. (β (λ ) can be chosen in fact arbitrarily, of course,
c = c(q) will depend on β (λ ).) Basically, it means that q(x)→ 0 at ∞ arbitrarily
slow. Finally, we normalize f (0) = 1+ i m

2 .
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We have now

distL1(D)
(
ηε ,A1)' u(0)

‖wε‖∞

ε =
ε

‖wε‖∞

= ‖ηε − fε‖L1(D)

Take an arbitrary Ψ ∈ B1, so |Ψ | ≤ 1. We have, since |Ψ | ≤ 1:

‖ηε −Ψ‖L1(D) ≥ ‖ fε −Ψ‖L1(D)−‖ fε −ηε‖L1(D)

= ‖ fε −Ψ‖L1(D)−
ε

‖wε‖∞

≥
∫

{z:| fε |≤1}

| fε −Ψ |dA+
∫

{z:| fε |≥2}

| fε −Ψ |dA

− ε

‖wε‖∞

≥ Area{z : | fε | ≥ 2}− ε

‖wε‖∞

≥ Area
{

z : u(z)≥ 2α(ε) log
1
ε

}
− ε

α(ε) · log 1
ε

≥
cβ
(
α(ε) log 1

ε

)
α(ε) log 1

ε

− ε

α(ε) log 1
ε

.

The proof is complete after we choose β so that
β(α(ε) log 1

ε )
ε

→ ∞ when ε → 0 and
set δ := ε

α(ε) log 1
ε

= distL1(D)
(
ηε ,A1

)
.

4 Final Remarks

(I) As is clear from the last part of the proof of Thm. 3, the function β responsible

for the rate of convergence of
dist(ηδ ,B

1)
dist(ηδ ,A1)

→ ∞ when δ ↓ 0 is, more or less, arbitrary.

Thus, in essence, the answer to Wermer’s question is in the negative in L1(D)−A1(D)
setting. Moreover though, according to Prop. 1, for any f : ‖ f‖∞ ≤ distL1(D)

(
f ,A1

)
≤

ε ⇒ distL1(D)
(

f ,B1
)
≤ ϕ(ε) with ϕ(ε) ↓ 0 when ε ↓ 0, the rate at which ϕ(ε) ↓ 0

can be arbitrary slow compared to ε ↓ 0. A very different situation from L1−H1 on
T= ∂D, where (cf. [11, Thm. 3.2]) ϕ(ε) can be chosen to be O

(
ε log 1

ε

)
, “almost as

good” as O(ε).
(II) If we replace f (z) in the proof of Thm. 3 by an (infinite) convex combination

of rotates of f by all rational angles, fix ε , say 1
2 , and consider w built as before

based on f , we shall get a (known) example of a function in C
(
D
)

whose best A1

approximation (in L1(D,dA)) is unbounded near every point of T = ∂D (cf. [10,
Prop. 7.6]).

A similar example can be built in L1−H1 situation on T. Indeed, following [7, p.
99] consider a Taylor series f0

(
reiθ
)
= u0

(
reiθ
)
+ iv0

(
reiθ
)

with u≥ 0, unbounded
near r = 1, θ = 0, and v0 ∈C

(
D
)

;v0(0) = 0.
As above, translating f by all rational angles θn and taking a convex combination

of all f (θ −θn) with rapidly decreasing coefficients Cn ≥ 0,
∞

∑
0

Cn = 1 we obtain the
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function

F(z) =
∞

∑
0

Cn

(
un

(
reiθ
)
+ ivn

(
reiθ
))

, un + ivn = f0

(
re(θ−θn

)
,

clearly in H1, Re F ≥ 0 and unbounded near every point on T. F(z) = F1(z)+ iF2(z),
F2(0) = 0 Let ϕ∗ := (−F−F(0)) ∈ H1

0 :=
{

g ∈ H1(D) : g(0) = 0
}

. w := F1 +ϕ∗ =
F1−F1− iF2 +F(0) ∈C(T), w−ϕ∗ = F1 ≥ 0, so

(w−ϕ
∗) = |w−ϕ

∗| on T a.e.

Therefore, again by the Hahn–Banach duality criterion (cf. [10], e.g.) ϕ∗ is the best
H1

0 approximation in L1(T,dθ) to a continuous function w ∈C(T) that is unbounded
near every point on T. Replacing w by e−iθ w =: w1 and ϕ∗ by ϕ∗

z = iΦ∗, we get a
continuous function on T whose best L1-approximation in H1 is unbounded at ev-
ery point on T. Obviously, in L1−H1-case, this cannot occur if w is smoother than a
merely C(T) function, e.g., if w∈ Lipα(T), α > 0, cf. [7]. In the L1(D)−A1(D) situ-
ation it is already not known, whether, say w∈ Lip1 on D can produce an unbounded,
or even discontinuous in D best A1-approximation in L1(D) — cf. [10, Question 2].

(III) Along the same lines the question of hereditory regularity of the best (in
L1(D)) A1-approximation to w ∈C∞

(
D
)

remains unanswered. For example, if w(z)
is real-analytic in D, does it imply that its best approximant in A1 is merely continuous
in D? In the case of L1-harmonic approximation, it is known to be false [10]. The only
result that is known for analytic approximation is that the best A1-approximation to a
C∞
(
D
)

function is in
⋂

p>0
H p [10, Thm. 4.1]. This is far from satisfactory.

In L1−H1-approximation, it has been known for over 60 years that if w is real-
analytic on an arc γ ⊂ T, its best H1(D)-approximation is also real analytic across γ

— cf. [12] and references therein.
(IV) As one sees while comparing proofs of Thms. 2 and 3, the fact how large

the set of representing measures is for the disk algebra plays a crucial role. More
or less equivalently, the size of the annihilator figures out decisively. The latter, of
course, is enormous when we consider the disk algebra inside the algebra of continu-
ous functions on the disk rather than the circle. In view of this it would be of interest
to consider the above questions in higher dimensions. To the best of the author’s
knowledge nothing has been done in that setting.
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